Daftar Artikel Coronavirus dari Springer Nature

 springer natureDaftar Artikel Coronavirus dari Springer Nature 

TitleDOIJournalArticle TypeDateURL
A pneumonia outbreak associated with a new coronavirus of probable bat origin10.1038/s41586-020-2012-7NatureArticle1/3/2020https://www.nature.com/articles/s41586-020-2012-7
A new coronavirus associated with human respiratory disease in China10.1038/s41586-020-2008-3NatureArticle1/3/2020https://www.nature.com/articles/s41586-020-2008-3
Latest updates on the coronavirus outbreak10.1038/d41586-020-00154-wNatureNews https://www.nature.com/articles/d41586-020-00154-w
What you need to know about the Wuhan coronavirus10.1038/d41586-020-00209-yNatureNews video https://www.nature.com/articles/d41586-020-00209-y
Coronavirus outbreak: What’s next?10.1038/d41586-020-00236-9NatureNews https://www.nature.com/articles/d41586-020-00236-9
China’s response to a novel coronavirus stands in stark contrast to the 2002 SARS outbreak response10.1038/s41591-020-0771-1Nature Medicinecomment1/27/2020http://doi.org/10.1038/s41591-020-0771-1
Rapid outbreak response requires trust10.1038/s41564-020-0670-8Nature Microbiologyeditorial1/22/2020https://doi.org/10.1038/s41564-020-0670-8
A mouse model for MERS coronavirus-induced acute respiratory distress syndrome10.1038/nmicrobiol.2016.226Nature Microbiologyarticle9/28/2016https://doi.org/10.1038/nmicrobiol.2016.226
Precision mouse models with expanded tropism for human pathogens10.1038/s41587-019-0225-9Nature Biotechnologyarticle10/1/2019http://doi.org/10.1038/s41587-019-0225-9
Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host10.1038/s41564-019-0371-3Nature Microbiologyarticle5/1/2019http://doi.org/10.1038/s41564-019-0371-3
SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection10.1038/s41467-019-13659-4Nature Communicationsarticle12/18/2019http://doi.org/10.1038/s41467-019-13659-4
Early events during human coronavirus OC43 entry to the cell10.1038/s41598-018-25640-0Scientific Reportsarticle5/8/2018https://doi.org/10.1038/s41598-018-25640-0
Structural basis for human coronavirus attachment to sialic acid receptors10.1038/s41594-019-0233-yNature Structural & Molecular Biologyarticle6/1/2019http://doi.org/10.1038/s41594-019-0233-y
Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors10.1038/s41594-019-0334-7Nature Structural & Molecular Biologyarticle12/1/2019http://doi.org/10.1038/s41594-019-0334-7
Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors10.1038/s41467-019-10280-3Nature Communicationsarticle5/28/2019http://doi.org/10.1038/s41467-019-10280-3
Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein10.1038/s41467-019-10897-4Nature Communicationsarticle7/11/2019http://doi.org/10.1038/s41467-019-10897-4
Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis10.1038/s41598-018-34171-7Scientific Reportsarticle10/24/2018https://doi.org/10.1038/s41598-018-34171-7
Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein10.1038/s41598-018-34859-wScientific Reportsarticle11/9/2018https://doi.org/10.1038/s41598-018-34859-w
ISG15 in antiviral immunity and beyond10.1038/s41579-018-0020-5Nature Reviews Microbiologyreview-article7/1/2018http://doi.org/10.1038/s41579-018-0020-5
REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes10.1038/s41564-018-0295-3Nature Microbiologyperspective1/1/2019http://doi.org/10.1038/s41564-018-0295-3
Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV10.1038/s41467-019-13940-6Nature Communicationsarticle1/10/2020http://doi.org/10.1038/s41467-019-13940-6
SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target10.1038/s41467-018-08015-xNature Communicationsarticle1/10/2019http://doi.org/10.1038/s41467-018-08015-x
Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations10.1038/s41467-018-04574-1Nature Communicationsarticle6/8/2018http://doi.org/10.1038/s41467-018-04574-1
Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform10.1038/s42003-018-0175-7Communications BiologyArticle10/29/2018https://doi.org/10.1038/s42003-018-0175-7
Development and Evaluation of a Multiplexed Immunoassay for Simultaneous Detection of Serum IgG Antibodies to Six Human Coronaviruses10.1038/s41598-018-37747-5Scientific Reportsarticle2/4/2019https://doi.org/10.1038/s41598-018-37747-5
Deubiquitylating enzymes and drug discovery: emerging opportunities10.1038/nrd.2017.152Nature Reviews Drug Discoveryreview-article1/1/2018http://doi.org/10.1038/nrd.2017.152
Clinical metagenomics10.1038/s41576-019-0113-7Nature Reviews Geneticsreview-article6/1/2019http://doi.org/10.1038/s41576-019-0113-7
Passive immunotherapy of viral infections: 'super-antibodies' enter the fray10.1038/nri.2017.148Nature Reviews Immunologyreview-article5/1/2018http://doi.org/10.1038/nri.2017.148
Origin and evolution of pathogenic coronaviruses10.1038/s41579-018-0118-9Nature Reviews Microbiologyreview-article3/1/2019http://doi.org/10.1038/s41579-018-0118-9
A new twenty-first century science for effective epidemic response10.1038/s41586-019-1717-yNaturereview-article11/1/2019http://doi.org/10.1038/s41586-019-1717-y
Precision epidemiology for infectious disease control10.1038/s41591-019-0345-2Nature MedicinePerspective2/6/2019https://doi.org/10.1038/s41591-019-0345-2
Tracking virus outbreaks in the twenty-first century10.1038/s41564-018-0296-2Nature Microbiologyreview-article1/1/2019http://doi.org/10.1038/s41564-018-0296-2
Modelling microbial infection to address global health challenges10.1038/s41564-019-0565-8Nature Microbiologyperspective10/1/2019http://doi.org/10.1038/s41564-019-0565-8
Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic10.1038/s41590-017-0007-9Nature Immunologyreview-article1/1/2018http://doi.org/10.1038/s41590-017-0007-9
Pathways to zoonotic spillover10.1038/nrmicro.2017.45Nature Reviews Microbiologyperspective5/30/2017https://doi.org/10.1038/nrmicro.2017.45
Towards a genomics-informed, real-time, global pathogen surveillance system10.1038/nrg.2017.88Nature Reviews Geneticsreview-article1/1/2018http://doi.org/10.1038/nrg.2017.88
The phylogenomics of evolving virus virulence10.1038/s41576-018-0055-5Nature Reviews Geneticsreview-article12/1/2018http://doi.org/10.1038/s41576-018-0055-5
Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin10.1038/s41586-018-0010-9Natureletter4/1/2018http://doi.org/10.1038/s41586-018-0010-9
Characterizing the dynamics underlying global spread of epidemics10.1038/s41467-017-02344-zNature Communicationsarticle1/15/2018http://doi.org/10.1038/s41467-017-02344-z
Comparative Analysis of Eleven Healthcare-Associated Outbreaks of Middle East Respiratory Syndrome Coronavirus (Mers-Cov) from 2015 to 201710.1038/s41598-019-43586-9Scientific Reportsarticle5/14/2019https://doi.org/10.1038/s41598-019-43586-9
Infection Prevention Measures for Surgical Procedures during a Middle East Respiratory Syndrome Outbreak in a Tertiary Care Hospital in South Korea10.1038/s41598-019-57216-xScientific Reportsarticle1/15/2020https://doi.org/10.1038/s41598-019-57216-x
Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission10.1038/s41598-018-33487-8Scientific Reportsarticle10/11/2018https://doi.org/10.1038/s41598-018-33487-8
Origin and evolution of pathogenic coronaviruses10.1038/s41579-018-0118-9Nature Reviews Microbiologyreview-article3/1/2019http://doi.org/10.1038/s41579-018-0118-9
Structural basis for human coronavirus attachment to sialic acid receptors10.1038/s41594-019-0233-yNature Structural & Molecular Biologyarticle6/1/2019http://doi.org/10.1038/s41594-019-0233-y
Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors10.1038/s41467-019-10280-3Nature Communicationsarticle5/28/2019http://doi.org/10.1038/s41467-019-10280-3
SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection10.1038/s41467-019-13659-4Nature Communicationsarticle12/18/2019http://doi.org/10.1038/s41467-019-13659-4
Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein10.1038/s41467-019-10897-4Nature Communicationsarticle7/11/2019http://doi.org/10.1038/s41467-019-10897-4
Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV10.1038/s41467-019-13940-6Nature Communicationsarticle1/10/2020http://doi.org/10.1038/s41467-019-13940-6
Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors10.1038/s41594-019-0334-7Nature Structural & Molecular Biologyarticle12/1/2019http://doi.org/10.1038/s41594-019-0334-7
Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host10.1038/s41564-019-0371-3Nature Microbiologyarticle5/1/2019http://doi.org/10.1038/s41564-019-0371-3
Precision mouse models with expanded tropism for human pathogens10.1038/s41587-019-0225-9Nature Biotechnologyarticle10/1/2019http://doi.org/10.1038/s41587-019-0225-9
Tracking virus outbreaks in the twenty-first century10.1038/s41564-018-0296-2Nature Microbiologyreview-article1/1/2019http://doi.org/10.1038/s41564-018-0296-2
A new twenty-first century science for effective epidemic response10.1038/s41586-019-1717-yNaturereview-article11/1/2019http://doi.org/10.1038/s41586-019-1717-y
Outbreak of a novel coronavirus10.1038/s41579-020-0332-0Nature Reviews Microbiologyresearch-highlight1/27/2020http://doi.org/10.1038/s41579-020-0332-0
Global site-specific analysis of glycoprotein N-glycan processing10.1038/nprot.2018.024Nature Protocolsprotocol6/1/2018http://doi.org/10.1038/nprot.2018.024
Bat tolerance to viral infections10.1038/s41564-019-0430-9Nature Microbiologynews-and-views5/1/2019http://doi.org/10.1038/s41564-019-0430-9
Acute respiratory distress syndrome10.1038/s41572-019-0069-0Nature Reviews Disease Primersprimer3/14/2019http://doi.org/10.1038/s41572-019-0069-0
“On the bat’s back I do fly”10.1038/s41579-019-0177-6Nature Reviews Microbiologyresearch-highlight5/1/2019http://doi.org/10.1038/s41579-019-0177-6
Decoding type I and III interferon signalling during viral infection10.1038/s41564-019-0421-xNature Microbiologyreview-article6/1/2019http://doi.org/10.1038/s41564-019-0421-x
An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections10.1038/s41594-019-0308-9Nature Structural & Molecular Biologyarticle10/1/2019http://doi.org/10.1038/s41594-019-0308-9
IFITM3 directly engages and shuttles incoming virus particles to lysosomes10.1038/s41589-018-0213-2Nature Chemical Biologyarticle3/1/2019http://doi.org/10.1038/s41589-018-0213-2
Prisoners of war — host adaptation and its constraints on virus evolution10.1038/s41579-018-0120-2Nature Reviews Microbiologyperspective5/1/2019http://doi.org/10.1038/s41579-018-0120-2
Studying human lung infection in mice10.1038/s41592-019-0672-8Nature Methodsresearch-highlight12/1/2019http://doi.org/10.1038/s41592-019-0672-8
Autophagy during viral infection — a double-edged sword10.1038/s41579-018-0003-6Nature Reviews Microbiologyreview-article6/1/2018http://doi.org/10.1038/s41579-018-0003-6
A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication10.1038/s41564-018-0244-1Nature Microbiologyletter11/1/2018http://doi.org/10.1038/s41564-018-0244-1
Capturing sequence diversity in metagenomes with comprehensive and scalable probe design10.1038/s41587-018-0006-xNature Biotechnologyarticle2/1/2019http://doi.org/10.1038/s41587-018-0006-x
Liver sinusoidal endothelial cells — gatekeepers of hepatic immunity10.1038/s41575-018-0020-yNature Reviews Gastroenterology & Hepatologyreview-article9/1/2018http://doi.org/10.1038/s41575-018-0020-y
Improving preparedness for the next flu pandemic10.1038/s41564-018-0206-7Nature Microbiologycomment8/1/2018http://doi.org/10.1038/s41564-018-0206-7
Norbert Bischofberger10.1038/nrd.2018.82Nature Reviews Drug Discoveryan-audience-with6/1/2018http://doi.org/10.1038/nrd.2018.82
Modeling human lung infections in mice10.1038/s41587-019-0269-xNature Biotechnologynews-and-views10/1/2019http://doi.org/10.1038/s41587-019-0269-x
Respiratory syncytial virus entry and how to block it10.1038/s41579-019-0149-xNature Reviews Microbiologyreview-article4/1/2019http://doi.org/10.1038/s41579-019-0149-x
Inflammation induced by influenza virus impairs human innate immune control of pneumococcus10.1038/s41590-018-0231-yNature Immunologyarticle12/1/2018http://doi.org/10.1038/s41590-018-0231-y
Crystal structure of the natural anion-conducting channelrhodopsin Gt ACR110.1038/s41586-018-0511-6Naturearticle9/1/2018http://doi.org/10.1038/s41586-018-0511-6
The virome hunters10.1038/nbt.4268Nature Biotechnologynews-feature11/1/2018http://doi.org/10.1038/nbt.4268
Expanded skin virome in DOCK8-deficient patients10.1038/s41591-018-0211-7Nature Medicineletter12/1/2018http://doi.org/10.1038/s41591-018-0211-7
Dilated cardiomyopathy10.1038/s41572-019-0084-1Nature Reviews Disease Primersprimer5/9/2019http://doi.org/10.1038/s41572-019-0084-1
Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children10.1038/s41590-019-0347-8Nature Immunologyresource5/1/2019http://doi.org/10.1038/s41590-019-0347-8
Viral RNA structure-based strategies to manipulate translation10.1038/s41579-018-0117-xNature Reviews Microbiologyreview-article2/1/2019http://doi.org/10.1038/s41579-018-0117-x
The successes and future prospects of the linear antisense RNA amplification methodology10.1038/nprot.2018.011Nature Protocolsperspective5/1/2018http://doi.org/10.1038/nprot.2018.011
Lysosomes as a therapeutic target10.1038/s41573-019-0036-1Nature Reviews Drug Discoveryreview-article12/1/2019http://doi.org/10.1038/s41573-019-0036-1
Counter-regulatory renin–angiotensin system in cardiovascular disease10.1038/s41569-019-0244-8Nature Reviews Cardiologyreview-article2/1/2020http://doi.org/10.1038/s41569-019-0244-8
Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia10.1038/nm.4501Nature Medicinearticle4/1/2018http://doi.org/10.1038/nm.4501
Defective viral genomes are key drivers of the virus–host interaction10.1038/s41564-019-0465-yNature Microbiologyreview-article7/1/2019http://doi.org/10.1038/s41564-019-0465-y

Hits 1030